A O 7T

Algorithms and Software for Ordinary
Diftferential Equations
and Differential /Algebraic Equations

Alan C. Hindmarsh

Lawrence Livermore National Laboratory

Linda R. Petzold

University of Minnesota

Numerical Mathematics Group
Center for Computational Sciences € Engineering

UCRL-JC-116619
April 1994

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, ex-
press or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial products, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily con-
stitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United
States Government or the University of California, and shall not be used for

advertising or product endorsement purposes.

PREPRINT

This is a preprint of a paper submitted to Computers in Physics. Since changes
may be made before publication, this preprint is made available with the un-
derstanding that it will not be cited or reproduced without the permission of
the author.

Algorithms and Software for
Ordinary Differential Equations and
Differential /Algebraic Equations *

Alan C. Hindmarsh Linda R. Petzold
April 19, 1994

1 Introduction

Gaining insight into a physical process is frequently accomplished by con-
structing a mathematical model and computing solutions to it. Very often
such a model takes the form of a system of differential equations that govern
the behavior of the relevant physical variables as a function of time. If these
variables are also functions of space, then in the computation the continuous
spatial coordinates must also be discretized in some way. Problems of this
sort arise in a wide variety of disciplines. Among the scientific areas that
generate time-dependent differential-equation problems are chemical kinet-
ics, laser kinetics, mechanical systems, molecular dynamics, power systems,
neuronal modeling, electronic networks, computational fluid dynamics, and
various reaction-transport processes.

It is rare that a realistic mathematical model is amenable to a purely an-
alytic solution. We must usually generate a computational model from the

*Alan C. Hindmarsh is a mathematician in the Center for Computational Sciences and
Engineering at Lawrence Livermore National Laboratory, Livermore, California 94550.
Linda R. Petzold is a professor in the Department of Computer Science, University of
Minnesota, Minneapolis, MN 55455. Hindmarsh and Petzold have been responsible for
developing numerous software packages for the solution of ordinary differential equations
and differential-algebraic equations. The work of the first author was performed under the
auspices of the U.S Department of Energy by the Lawrence Livermore National Laboratory
under contract W-7405-Eng-48.

mathematical one. While avoiding issues of analytic solvability, this intro-
duces a variety of other difficult issues that couple the features of the original
model and the computing environment. On recognizing that problems arising
in various disciplines share many formal mathematical properties, the field of
numerical mathematics seeks to devise powerful and general techniques for
the transformation of a mathematical to a computational model, and for the
efficient numerical solution of the latter. As a result, many of the differential
equation problems that arise in applications are now routinely solved by the
use of general-purpose mathematical software packages. The availability of
such software has the additional advantage of leaving the scientist free to
focus on the content of the model itself instead of the details of its numerical
solution.

The effort represented by modern numerical algorithms and software goes
far beyond what could be justified within any one discipline or application
that benefits from it. A typical ordinary differential equation (ODE) solver
available today might well represent several man-years of work just in the de-
velopment and testing of the computer code, excluding many previous man-
years of theoretical investigations into error estimation, numerical stability,
and efficiency. The effort leading to a production code is highly cost-effective
because it benefits a broad spectrum of users.

In what follows, we identify some of the more important issues in solving
problems involving differential equations, show how these ideas lead to vari-
ous kinds of solution methods, and outline the current state of research work
in these areas.

2 Systems of Differential Equations

Mathematical models frequently take the form of a system of ODEs, and for
the moment we will suppose that these can be written in the concise and
explicit general form

Y (L) 1)

Here, t is time and y is a vector of dependent variables of interest (the “state
variables”). To save writing, we will often denote dy/dt by y’. The initial
value problem for (1) is to find the solution y(t) that satisfies a given initial
condition y(tp) = yo.

In many instances, the model also involves state variables whose time
derivatives do not appear in the equations. Then the set of equations is
known as a differential-algebraic equation (DAE) system. The most general
DAE system is written as

F(t,y,y') =0, (2)
where F' is some function. An important special case is the “semi-explicit”
system

d
5 = fty.) 3)
0 = g(t,y,2),

where z is another vector of dependent variables. Here, z is coupled to the
ODE for y, but dz/dt does not appear.

The independent variable ¢ need not actually be time, of course. ODE and
DAE initial value problems arise in applications in which the independent
variable is a spatial coordinate or some other variable, and everything we say
applies equally well to such problems. Yet in practice the majority of these
problems actually do involve time, and the nomenclature in the literature on
numerical ODE and DAE methods reflects that fact, in terms such as “time
step” and “time integration.”

3 Example: An Ozone Model

In order to give an idea of the kinds of problems for which ODE and DAE
solvers can be effectively applied, we give here an example problem de-
rived from a time-dependent system of PDEs. The problem comes from
atmospheric modeling, namely the production and transport of ozone in the
stratosphere. However, it has been considerably simplified in order to make
it presentable in full in a limited space such as this.

The model is a system of two coupled PDEs in time and two space dimen-
sions. The dependent variables represent, respectively, the concentrations
of the species O, (singlet oxygen) and Oj (ozone) in moles/cm® Molecu-
lar oxygen O, is of course also present, but is assumed to have a constant
concentration of 3.7 - 10'® here. The kinetic interaction between the three
species is governed by the so-called Chapman mechanism, which includes the

destruction of ozone by sunlight:

0+0, — Os,, ky

O+ 03 — 20,, k,
0O, — 20, ks(t)
O3 — 04 0,;, kit).

Thus the chemistry is diurnal, having a reaction rate constant that varies with
the time of day. In addition, vertical and horizontal diffusion is assumed, with
the vertical diffusivity increasing with altitude. Specifically, the PDE system
is:

ac 9 0 ac

_ 9 0| \9C i1 2 - _
5 —Isha$2+az [I&u(z)az]+R(c,c,t) (:=1,2),

Krp=4x10"% and K,(z) =108/

The spatial domain is the rectangle 0 < z < 20, 30 < z < 50 km (z =
latitude, z = altitude), and the time interval is 0 < ¢ < 432,000 seconds (5
days). The reaction terms are given by:

RY(c', % t) = —kic' — kpc'c® + ka(t) - 7.4 - 10™ + kq(2)c?,

R*(ct, e, t) = kyc' — kyc' S — ka(2) P,
ki =6.031, k, =4.66-10716

ka(t) = exp[—22.62/sin(wt)], for sin(wt) > 0,
270, for sin(wt) <0,
ka(t) = exp[—7.601/sin(wt)], for sin(wt) > 0,
27700, for sin(wt) < 0,

w = /43,200 .

As boundary conditions, we pose homogeneous Neumann boundary condi-
tions (zero gradients) on all boundaries. To complete the problem descrip-
tion, we pose initial profiles for ¢! at t = 0 which are consistent with the
boundary conditions.

The process of generating an ODE system from this PDE problem is
referred to as semi-discretization, and also as the Method of Lines. We
discretize the spatial region, with (in this case) a uniform mesh of size M x M.

4

At each mesh point (z;,2r) we have approximate values ¢, for the two
concentrations. Central differencing gives discrete approximations to the
spatial derivatives in the PDEs. The result is an ODE system in the vector

_ 1 2 1 2 1 2 T
y= (Cl,l, €1,1:62,15C2,15 - - - s CAL M CM,M)

of length 2M?. The ordering is first by species index, then by j, then by k.
Initial conditions for the ODE system would simply be the discrete values of
the given initial profiles for the c'(z, z).

The ODE initial value problem obtained in this example has some in-
teresting features. First, the size of the problem can be arbitrarily large,
depending on M. Second, the rate constants k; span a considerable range of
values, and as a result the ODE system has the property of “stiffness,” which
will be discussed in detail shortly. Thirdly, the diurnal variation of the last
two rate constants causes a corresponding wide diurnal variation in one of
the solution components (oxygen singlet). The diurnal variation of the rate
constant k3 over a five-day period is shown in Figure 1. The combination
of these properties makes the problem particularly challenging for an ODE
solver.

T T

11 | I L

0 20 L 100 120

60
t o)
Figure 1: The diurnal kinetic rate constant ks3(t) is shown over a five-day
period. It peaks at noon of each day and is zero during the night time. The
variation in time of the concentration of O, follows the same diurnal pattern

very closely.

4 The Euler Method

To illustrate the variety of issues associated with ODE and DAE problems,
we examine some typical numerical methods. The oldest and simplest of
all methods for solving ODEs was devised by the mathematician Leonhard
Euler in the eighteenth century. It consists of computing discrete vectors
Y1,Y2, - .. that approximate y(t) at the times t;,1,, .. ., starting from the initial
condition y(to) = yo. If yn.—1 has been computed for some n > 1, then y, is
defined as

Yn = Yn-1 + hnf(tn—lyyn—l), (4)
where h, = t, — t,_; is the size of the time step. In other words, the next
solution point is computed at time t, = t,_; + h, by moving from the point
(tn-1,Yn-1) on a line at a constant slope of f(t.-1,yn-1), the slope of the
solution through that point according to (1). The method is completely
ezplicit: The new value is defined directly in terms of the known previous
values. This leaves unspecified the choice of the step sizes h,, hy,... but
we defer this question until later. Figure 2 shows this Euler-method solution
(connected dots) for a single ODE, along with the true solution (solid curve).
In this case, the step sizes h, are all equal.

Yo

v

Figure 2: The Euler method is the oldest and simplest technique for solving
ODEs. Shown here are the numerical solution computed by the Euler method
(connected dots) and the true solution (solid curve). Since the computed
solution can quickly drift away from the true solution unless the step sizes
are quite small, it is no longer the method of choice.

Although the Euler method is natural and easy to apply, it is rarely the

6

method of choice, for reasons that will become clear later on. As suggested by
Figure 2, the numerical solution can easily drift away from the true solution
unless the step sizes are kept quite small. Suppose we use the Euler method
to solve (1) from %o to a fixed final time T with N steps of equal size h =
(T —to)/N, and that we let N — oo, so that A — 0. If we suppose also that
we know the exact final answer y(T'), then we would find that the error in
the final computed value yy behaves as

yv —y(T) = O(h). (5)

In fact, this general behavior of the error can be deduced by a careful
analysis. We will see later that, even on problems in which the Euler so-
lution appears to be reasonably accurate, much better error behavior can
be achieved with other methods (for example, error = O(h?)) at very little
additional cost. For reference, the dominant cost in this Euler solution is N
evaluations of f (one evaluation per step).

The Euler method is not directly applicable to DAE systems, even in the
special semi-explicit case of (3). If we have values y,_; and 2,_; approximat-
ing y and z at time ¢t = {,_,, we can apply the Euler method in (4) to the
ODE of (3) to advance y to y,, but there is no easy way to advance z. We
might pose the problem of solving the algebraic equation

g(tnaynazn) =0 (6)

for z, (given ¢, and y,), but this may be either difficult, because of the
nonlinear way in which g depends on z, or even mathematically impossible,
because the dependence of g on z may be singular (unsolvable). In an extreme
case (which occurs in equations describing incompressible hydrodynamics),
g = ¢(t,y) does not depend on z at all, and there is no hope of solving (6),
yet the DAE system (3), is well-posed (it has a well-defined solution).

5 Stiff Systems

Another important issue in matching solution methods to ODE problems is
stiffness. In the simplest terms, the ODE system of (1) is said to be stiff if
it has a strongly damped, or “superstable” mode. To get a feeling for this
concept, consider the solutions y(t) of an ODE system starting from various

initial conditions. For a typical nonstiff system, if we plot a given component
of the vector y versus ¢, we might get a family of curves such as those shown
in Figure 3(a). The curves show a stable tendency to merge as t increases,
but not very rapidly. When such a familv of curves is plotted for a typical
stiff system, the result might be as shown in Figure 3(b). Here, the curves
merge rapidly to a set of smoother curves, the deviation from the smooth
curve being strongly damped as ¢ increases.

(a) (b)

yﬁ v A

J

T

> >
t t

Figure 3: A system of ODEs is said to be “stiff” if its solutions show strongly
damped behavior as a function of the initial conditions. The family of curves
shown in (a) represents the behavior of solutions to a nonstiff system for
various initial conditions. In contrast, solutions to the stiff system shown in

(b) tend to merge quickly.

Stiffness in a system of ODEs corresponds to a strongly stable behavior
of the physical system being modeled. At any given time, the system is in a
sort of equilibrium (though not necessarily a static one). Accordingly, if some
state variable is perturbed slightly, the system responds rapidly to restore
itself to equilibrium. Typically, the true solution y(¢) of the corresponding
ODE system shows no such rapid variation, except possibly at the very be-
ginning of the time interval. However, the potential for rapid response is
present in the ODEs at all times, and becomes real if one poses an initial
value problem by perturbing y at some point out of equilibrium. The sys-
tem is said to have at least two time scales (or time constants); by a “time
scale,” we mean the rough value of the spacing of ¢ values needed to resolve
a solution curve accurately. There is a long time scale present in the solution
of interest, and there is a short time scale given by the damping time (or

8

time constant) of any of the perturbed solutions. The more different these
two time scales are, the stiffer the system is; the ratio of the longest to the
shortest time constant in a stiff system is called the “stiffness ratio” of the
system.

Stiffness is perhaps best understood by means of a small example. The
simple damped oscillator circuit in Figure 4, with a capacitor, a resistor, and
an inductor, has an electric current I that obeys the second-order ODE

d*I dI I
LEZ--FREZ-‘}'E—O. (7)

Inductor Switch

—

| Current /

AWV

Resistor

Capacitor ____

Figure 4: A simple electrical circuit illustrates the behavior of a typical stiff
system. In this case, the capacitor damps perturbations to the system caused
by a change in current.

If we let y be a vector with two components, y* = I and y? = dI/dt
(we use superscripts to avoid confusion with the notation in (4)), then (7) is
equivalent to a system of the same form as (1), namely

dyl 2
I =Y (8)
dy*

- = —(B/D) v’ - y'/LC

Consider parameter values such that (in suitable dimensionless units)
R/L =20 and LC = 100, and initial conditions at time ¢ = 0 in which I = 0

and dI/dt = 10 (as if a voltage were applied to the circuit and then switched
off). In the notation of (1) and (4), to = 0 and yo = (1%).

Figure 5 is a plot of the solution (solid line), where the time axis is
logarithmic for convenience. Notice that the solution varies on a time scale
of less than 0.1 at early times, then becomes smooth and varies on a time
scale of around 1000. The system has two different time scales and a stiffness
ratio of around 10000. In fact, a precise analytic solution is easily derived. It
consists of a linear combination of simple exponential functions exp(—t/n;)
and exp(—t/7;), where (very nearly) = 0.05 and 7, = 2000. The short
time constant 7; is present in the system even when the solution has a much
longer time scale, as can be seen by posing an initial value problem with a
perturbed initial y at (say) ¢ = 10. Such a perturbed solution is shown as
the dashed line in Figure 5.

1A
06 |- l
N -
0.4
02|
0 | | N i o
10-2 10! 1 10 102 10° 104 t

Figure 5: The solid curve is a plot of the solution to the ODE describing the
circuit shown in Figure 4. Note that the time axis is logarithmic. The plateau
of the curve separates two regions where the solution varies on two different
time scales. If the initial value of the y variable is perturbed at ¢t = 10
(dashed curve), the shorter time scale predominates for a while, and then
the solution displays the same long time scale as the unperturbed solution.

The smallest time scale in a stiff system manifests itself in another way
when we try to carry out a numerical solution of the system. Solution by
an explicit method like the Euler method either will produce completely
inaccurate answers or will require very small time step sizes (comparable with
the smallest time constant present in the system) to get accurate answers.

10

Figure 6 shows a partial solution by the Euler method of the problem of
(8), starting with values taken from the earlier one at ¢t = 10 and using a
constant step size h = 0.2 (broken line), along with the true solution (flat
curve). After a while, the successive values of y' = I oscillate roughly like
(—3)™. We say the numerical method is unstable when this happens. To get
a reasonably accurate and stable Euler method solution of this problem, we
must use values of h well below 0.05. Yet this part of the true solution is
very well resolved on a time scale of more than 10.

1A

4

I

o 10 1 12 13 14 15 16

-1

Figure 6: An explicit Euler method solution to the system of ODEs describing
the circuit shown in Figure 4. Initial values are the same as those illustrated
in Figure 5 at t = 10, and the time step is constant. The oscillatory behavior
of the numerical solution (broken line) as contrasted with the true solution
(flat curve) indicates that the explicit Euler method introduces an instability
in this application. An accurate and stable solution by Euler’s method would
require a step size smaller than the shortest time scale of the problem.

The circuit problem of (8) also provides an example of a DAE system,
albeit a very simple one. If we fix R and C but make the inductance L
smaller and smaller, the ODE system (8) becomes more and more stiff (the
stiffness ratio is roughly R?C/L). In the limit L = 0, (8) (with the second
equation first multiplied by L) reduces to the DAE system

dy!
pil y? (9)
0 = —Ry*-y'/C

11

Here, no time derivative of y? appears, and the system has the general
form (3) (with y = y* and 2z = y?). The limit process has changed the
mathematical properties of the system in a fundamental way: although (7)
or (8) allow us to freely specify two initial conditions (I and dI/dt) the
system (9) allows only one, since y' and y? are algebraically related. This
example trivially enables us to eliminate y?, leaving a single first-order ODE,
which is the limit of (7) as L approaches zero. But for a complicated DAE
problem, this elimination may be either impossible or highly impractical. So
if we continue to approach (9) as a system in two dependent variables, we
now find that the initial vector y(0) is not arbitrary, as it was in the ODE
case. Accordingly, we have to set y(0) in a manner that is consistent with
the equations. In this simple example, that means that y? = —y!/RC. In a
more complicated problem, finding consistent initial conditions may be quite
a challenge.

6 The Implicit Euler Method

As we have seen, the explicit Euler method is unstable when applied to a
stiff system of ODEs unless the step size is constrained to be smaller than
the shortest time scale of the system. This constraint on the step size can
be a very severe limitation in some applications, forcing the method to take
time steps that are intolerably small before acceptable accuracy is obtained.
For some problems, the explicit Euler time steps must be so small (in inverse
proportion to the stiffness) that roundoff errors degrade the numerical solu-
tion significantly, and the computation cost is prohibitive. It is natural to ask
whether there are other methods that can solve stiff systems using time steps
that are not limited by stability but only by the need to resolve the solution
curve. It is now widely recognized that in general the answer requires the
use of implicit methods, and in particular methods that are designed to have
good stability properties for stiff systems. The simplest of these methods is
the implicit Euler method.
The implicit Euler method for the ODE (1) is given by

Yn = Yn-1 + hnf(tn, yn)- (10)

In contrast to the explicit Euler formula (4), this method is called implicit
because y, is not defined directly in terms of past values of the solution.

12

Instead, it is defined implicitly as the solution of the nonlinear system of
equations (10). We can write this nonlinear system abstractly as

F(u) =0, (11)

where u = y, and F(u) = v — yp—1 — hnf(tn,u). The nonlinear system of
(11) is typically solved by Newton iteration,

(a—F) [u* = ul™] = —F ™). (12)
Ju
Here, if N is the size of the ODE system, u and F are vectors of length N,
and the Jacobian matrix dF/0u is an N x N matrix of partial derivatives
of F evaluated at u(™). Thus, there is a linear system to be solved at each
iteration. Newton’s method converges in one iteration for linear systems, and
the convergence is quite rapid for general nonlinear systems, given a good
initial guess. For the initial guess, we can use an explicit formula such as the
explicit Euler method or, more commonly, a polynomial that coincides with
recent past solution values, evaluated at ¢,,. In practice, the Jacobian matrix
1s not reevaluated at each iteration, and furthermore is often approximated
by numerical difference quotients rather than evaluated exactly. This use of
an approximate Jacobian that is fixed throughout the iteration sequence in
(12) is called Modified Newton iteration.

To gain a better understanding of why the implicit Euler method does
not need to restrict the step size to maintain stability for stiff systems, let us
consider a very simple example,

Y =—aly—-t)+2t , y(0)=0, (13)

on the interval 0 <t < 1. Here, a is a positive parameter. When a is very
large, the system is stiff. The general solution to (13) is given by

y(t) = t* + yoe™°".

This equation shows clearly that if « is large and the initial value is perturbed
slightly away from yo = 0, the solution tends rapidly back to the curve y = ¢2.
This behavior is characteristic of stiff systems. A sketch of the solution by
the implicit Euler method for a slightly perturbed initial value is given in
Figure 7(a), where it can be seen that the numerical solution exhibits the

13

(«) ”

Ys

Yo

Figure 7: The implicit Euler method overcomes a weakness of the explicit
Euler method in that it does not need to restrict the step size to provide
stable solutions for stiff systems. The solution of the system of (13) for a
slightly perturbed initial value, shown in (a), was generated by the implicit
Euler method. It is well-behaved in the sense that the y values merge rapidly
with the unperturbed solution curve. In contrast, the explicit Euler method
applied to the same system produces the erratic oscillatory behavior shown

in (b).

14

correct behavior. In contrast, the explicit Euler method solution is shown in
Figure 7(b), where the instability is evident in the same way as in the circuit
example (see Figure 6).

To see why the implicit Euler method gives such a good result for this
problem, we can examine the error propagation properties of this method in
more detail. When the implicit Euler method is applied to (13), we obtain

Yn = Yn-1 — ha(y, — ti) + 2ht,,. (14)

(Here we are dropping the subscript on h.) If we expand the true solution
y(t) in a series about £,_;, we find that

y(tn) = y(tn-1) — haly(t,) — t3] + 2ht, + O(R?). (15)

Subtracting (15) from (14) and defining the global error e, = y, — y(t,), we

obtain
€n = €n_1 — hae, + O(h?). (16)

Solving for e,, we see that

I €n— 1| 2
en| < + O(h*). 17
enl < 125+ O a7)
Thus the global error remains small even for large values of a. In contrast,
the global error for the explicit Euler method satisfies

lenl <11 = hallens| + O(R?). (18)

Here the error will grow exponentially unless |1 — ha| < 1. Thus the step
size must be constrained to satisfy A < 2/a.

For general ODE systems y’ = f(t,y), the negative of the eigenvalues of
the matrix J = Jdf/0y play the role of a. For stiff systems, the eigenvalues
of J = 0f/0y include at least one with a relatively large negative real part.
In the circuit example (8), the eigenvalues of J are approximately —0.0005
and —20.0. The great disparity between these two numbers is what makes
the problem stiff. When A is viewed as an eigenvalue of J, the set of complex
numbers A satisfying |1 +h\A| < 1 is called the region of absolute stability for
the explicit Euler method. The corresponding region for the implicit Euler
method is given by 1/|1 — hA| < 1, and is much larger, indicating much
greater stability for the implicit method.

15

The implicit Euler method can also be used to solve the DAE system (2).
By identifying f(ts,yn) = (Yn —Yn-1)/hx» in (10) with '(¢,) in F(t,y,y') = 0,

we arrive at
F <tna Yn, g"h¢) = 07 (19)

which implicitly defines y, on each time step. It is interesting to note that
when the implicit Euler method is applied to the very simple DAE system

y(t)—t* =0

which is the limit of (13) as @ — 00, the solution is y, = t2. Thus, the implicit
Euler method is exact for this problem! More generally, when applied to the
semi-explicit DAE system of (3), the implicit Euler method yields the pair
of equations

Yn — Yn-1
IR = tn, TI.,ZTI. b}
. f(tasyn, 2n)

0 = g(tn’ynazn)1

for the new values y, and z,. That is, we replace the ODE by the implicit
Euler equation and force the algebraic equation g = 0 to hold at the same
time. It turns out that the implicit Euler method, as well as some higher-
order generalizations of this method, have several properties that make them
quite attractive for the solution of DAE systems.

7 Errors and Error Estimates

In the previous section, we derived recurrence relations for the global errors
of the implicit and explicit Euler methods applied to a specific stiff ODE.
We saw that although the errors remain small for the implicit Euler method,
errors for the explicit Euler method can propagate in a disastrous way. It
is important in using these methods to have a basic understanding of the
various types of errors that are associated with a computation. Modern
computer codes attempt to adjust the step size to control the size of some of
these errors but not others.
For simplicity, we return to the implicit Euler method applied to the ODE
system of (1)
Yn = Yn-1 + hnf(tn’ yn)' (20)

16

On each step, this method makes an error that results from the approximation
of the differential equation by the difference equation. One measure of this
error is the amount by which the true solution to the ODE fails to satisfy
the difference equation defined by the method. This is known as the local
truncation error or local discretization error. For the implicit Euler method,
the local truncation error is given by

dn = y(tn-1) + hSf(tn, y(1n)) — y(tn),
which, after expanding in a series about t,_,, we can simplify to

2
dn=—_ " n
2y(£)

for some &, in t,_; < &, < t,.

There is another measure of the error at each time step that lends itself to
a more graphical interpretation. The local erroris the amount by which the
numerical solution after one step differs from the value of the true solution to
the ODE that passes through the previous numerical solution y,_;. Figure
8 illustrates this error.

vA
[’A / Local error

Yoo

|

I

| |
th-y &

Figure 8: Local error is the difference between the value y, of the numerical
solution to an ODE at a time ¢,, and the value of the true solution that passes
through the numerical solution at the last time step y,-;.

As an example, we shall determine the local error of the implicit Euler
method. Let u(t) be the analytic solution to the initial value problem

u'(t) = f(t,u(t))

u(tn—l) = Yn-1,

17

where y,,—; is the value of the numerical solution at f,_;. Applying one step
of the method, we obtain

Un = Yn-1 + hnf(tn,un).
The local error is given by
by = un, — u(ty).
From d, = yn-1 + hf(tn, u(ts)) — u(tn), we find that

_ AN 3
b = (I—hay) d, + O(h?).

If the implicit Euler method is applied to nonstiff systems, the local error and
local truncation error are nearly the same, whereas for stiff systems, where
hdf [dy is large, these two measures of the error are quite different. However,
both are O(h?) in the limit of small A.

There is yet another measure of the error that is, in a sense, the most
relevant for the user of ODE and DAE codes. This is global error, which
we touched on briefly above. The global error is the difference between the
numerical solution and the true solution to the initial value problem. In the
case of either of the two Euler methods, the fact that d, = O(h?) can be
used to prove that the global errors y,, — y(,,) are O(h).

One might ask, why bother with the local error and the local truncation
errors? The reason is that most ODE codes do not attempt to estimate or
control the global error because it is very expensive to do so. Instead, they
typically estimate either the local error or the local truncation error, and
attempt to control the step size so that a norm of this error is smaller than a
user-selected error tolerance. The global error is the result of the propagation
of local errors over many time steps. Its eventual size depends not only on
the size of the local errors, but on the stability of the method and of the
differential equation as well. Local error control in a code can be viewed as a
knob that can be turned to try to adjust the step sizes and hence the global
error. It is not a guarantee of a small global error.

Finally, we have touched on the notion of an error estimate. This is
the difference approximation that a code makes to estimate the dominant
term of the local truncation error or the local error. For the implicit Euler

18

method, the local truncation error depends on the local value of y”. This
second derivative can be approximated by the difference in y over the past
three points: t,_s, t,—1, and t,. This type of difference approximation of
the leading term of the local truncation error is often used in codes based on
multistep methods (described below) because the solutions at these points
are readily available.

Another type of error estimate is one obtained by computing the solution
by two different methods, one of which is locally more accurate than the
other. The difference between the locally computed solutions is an approxi-
mation to the error of the less accurate method. This type of error estimate
is often used in codes based on Runge-Kutta methods, which do not keep
past solution values.

Finally, another way to obtain an error estimate is to compute the solution
with two different step sizes and to compute the estimate on the basis of its
known asymptotic behavior as A — 0. This type of error estimate is often
used in codes based on extrapolation methods.

All of these error estimates are valid in various somewhat idealized situa-
tions. It is important to understand, however, that nearly all codes estimate
the local error or the local truncation error, and not the global error.

8 Higher-Order Methods

Because of their simplicity, we have been using the explicit and implicit Euler
methods to illustrate some basic concepts. Both have first-order accuracy:
the global errors are O(h) for a maximum step size of h. In most problems,
however, computational efficiency can be considerably increased by using
higher-order methods that are generalizations of these simple methods. The
importance of higher-order methods is that they are often able to achieve the
same level of accuracy as lower-order methods but with many fewer steps and,
hence, with much more efficiency. The higher-order methods fall primarily
into two classes, multistep methods and one-step methods.

8.1 Multistep Methods

Multistep methods make use of several past values of y and/or f to achieve
a higher order of accuracy for the ODE of (1). The general form of a k-step

19

multistep method is
k k
Eajyn—i = hZﬂjfn—j’ (21)
=0 j=0

where a; and f; are constants that depend on the order, and possibly on
previous step sizes, and ap # 0. The quantities y,—; and f,_; represent
values of y and y’ respectively at the points t,,_;. The method is explicit if
Bo = 0 and implicit otherwise. Here, h = h, = t, — t,_;.

Several important classes of multistep methods have proven very efficient
and robust for solving various types of ODE systems. Adams methods make
use of past values of f, and are written

k
Yn = Yno1 + kD Bjfa-j- (22)
=0

Equation (22) gives a method of order k + 1; i.e., global errors are O(h**1).

The Adams methods are the best known multistep methods for solving
general nonstiff systems. Several popular codes are based on these methods,
which are stable up to order twelve for nonstiff problems. Each step requires
the solution of a nonlinear system,

Yn = an + hﬂﬁf(tna yn)

(an = past history terms). But rather than use the modified Newton pro-
cedure described earlier, this system is nearly always solved by simple func-
tional iteration. Here, from a predicted value yy,(0), one simply iterates on
the function in (22) whose fixed point is sought:

Yn(m+1) = Cn + hﬂof(tm yn(m+l))-

This converges reasonably well for nonstiff systems, and has the advantage
that no linear systems have to be solved. For this reason, most people refer
to the Adams/functional-iteration combination as an explicit method, even
though the underlying formula is implicit.

The most effective multistep methods for solving stiff systems are the
backward differentiation formulas (BDFs). BDF methods make use of past
values of y to advance the solution, according to the formula

k
Yo =3 Qi + hofa. (23)
i=1

20

The reason for the name is that, on identifying f, with y/, (23) is a for-
mula for approximating y’(¢,) (differentiation) in terms of current and past
(backward) values of y;.

The BDF method based on (23) has order k; i.e., global errors are O(h*),
and it is stable up to order six. The nonlinear system at each time step
is almost always solved by some form of Newton iteration, which usually
accounts for much, if not most, of the total cost of obtaining the solution.
Each Newton iteration involves the solving of an N x N linear system

AAy = residual vector

for a correction to y,, in which the coefficient matrix is
A=T-hBd, J=0fdy, (24)

and J is evaluated at some nearby value of t and y. (I denotes the N x N
identity matrix.) Functional iteration is ruled out in the stiff case, because
stiffness produces a large value for the Lipschitz constant L of f with respect
to y (the maximum of the norm of df/dy), and convergence of functional
iteration requires hL < 1; thus step sizes h are severely restricted, just as
they are for a nonstiff method such as explicit Euler.

Many widely used codes for solving ODE systems are based on this class
of methods. A representative code is the solver LSODE [1]. In addition,
BDF methods are very well suited for solving DAE systems. For the general
form F(t,y,y’) = 0, this means requiring y, to satisfy

— 5k e -
F (tn’yna y" Z};;(l) atyn-i) = 0 (25)

Several popular DAE codes are based on these methods, the most well-known
being the solver DASSL [2]. (More will be said about software in a later
section.)

The BDF methods were originally proposed and used in fized-step form,
where the coefficients a; and f, in (23) depend only on the order k. In
the implementations (e.g. LSODE), the step sizes h are actually allowed to
change periodically in accordance with a test on the estimated local error,
and the steps following a step size change use interpolated values for the y,,_;
at the new step size. However, many problems demand frequent changes of

21

step size, and for them the fixed-step BDF methods can lose efficiency or even
reliability. In fact, diurnal chemical kinetics problems, such as in the ozone
model given above, first demonstrated the need for variable-step forms for
BDF methods. Two different variable-coefficient forms of BDF methods have
been developed. In both, the method coefficients are recomputed at every
step as a function of the actual step sizes h,,h,_1,... used over the last
k steps. But in one version, the so-called fized-leading-coefficient version of
BDF's, the value of 3y does not vary; it depends only on &. This has important
consequences for the Newton iteration used, which will be discussed later.
The ODE solver VODE [3] and the DAE solver DASSL are representative of
codes that use this form of the BDF methods.

Multistep methods are more complex than one-step methods, both to
analyze and to implement. Their stability depends on the behavior of the
solutions to the difference equation (21). This equation has several funda-
mental solutions. Coefficients in this method must be chosen so that the
extraneous solutions to the difference equation (that is, solutions that do not
approximate the solution of the ODE or DAE) do not grow. A robust and
efficient implementation of a code based on multistep methods is far from
straightforward. Issues that must be dealt with include deriving stable vari-
ants of the formulas that are applicable for variable step sizes, estimating
errors and changing the step size and order of the method as the problem
changes, obtaining suitable starting values, deciding when to terminate the
nonlinear iteration, and determining appropriate starting step sizes. These
1ssues are even more complicated for DAE systems, for which much of the
ODE methodology is inapplicable.

8.2 One-Step Methods

The second class of higher-order methods is that of one-step methods. Unlike
the multistep methods, these methods do not make use of past values of
y or f (for the ODE system of (1)) to achieve a higher order. Instead,
they depend on evaluations of the differential equation at judiciously chosen
locations within the current time step. Such methods are known as Runge-
Kutta methods, or extrapolation methods, which are actually a special case
of general Runge-Kutta methods. Runge-Kutta methods were discussed in
considerable detail by John Butcher in a previous PNA column [4], but we
will give a short description here for the sake of completeness. A single

22

step with a Runge-Kutta method for the ODE y’' = f is defined by a set of
equations of the form

Yn = Yn- + h E bikia (26)
=1

ki = f (tn_l + cih, Yn-1 + hzaijkj))

=1
1=1,2,...,s.

This defines an s—stage Runge-Kutta method. Such a method can be either
explicit (a;; = 0 for j > 7) or implicit, and some implicit choices are useful for
stiff problems. One-step methods offer advantages over multistep methods for
some problems. For problems with frequent discontinuities, they are easier
to restart at a high order. For stiff systems with highly oscillatory modes,
one-step methods are stable with a higher order of accuracy than multistep
methods.

A difficulty in implementing one-step methods is finding an efficient so-
lution of the nonlinear system, which is in general larger than for multistep
methods. Another is obtaining the solution at points between time steps.
This latter task is easily accomplished with multistep methods via a polyno-
mial that passes through past values of y or f. For most problems, it is quite
difficult to write a one-step code that is competitive with the best multistep
codes. Implicit Runge-Kutta methods are potentially useful for some DAE
systems also, but there is in general an additional set of order conditions
which the method coefficients must satisfy to achieve a given order [5].

9 Large Stiff Systems

ODE systems that are both stiff and large (in number of ODEs) are especially
challenging, even if given in the explicit form of (1). As indicated above, an
implicit method then leads to a nonlinear algebraic system that must be
solved at every time step. The size and complexity of such systems may
make conventional treatments prohibitive in computational cost or memory
storage, or both. Considerable research is currently devoted to this class of
problems.

23

For a given time step, we can write the nonlinear system as F(y) = 0,
where F is related to the function f in dy/dt = f(t,y) by the equation
F(y)=y—an—hPBof(tn,y). By the well-known process of Newton’s method,
we generate successive approximations to the desired solution vector y by
adding corrections that are defined by an approximate linear system. This
reduces the problem to a sequence of large linear systems, which we write
simply as

Az =b. (27)

Here b is a vector of residuals (the negative of F(y) for the current approxima-
tion to y), A is a matrix related to the Jacobian J of f, namely A = I —hfoJ,
and z is the unknown vector of corrections to y.

Instead of relegating this problem to a standard linear-system solution
algorithm, an approach that can be much more effective is the use of iter-
ative methods. One starts with a guess zo (we use zo = 0), and corrects
it successively to get iterates z;,z,,.... Many iterative methods for linear
systems are known, but some are much more appealing than others in the
setting of large stiff systems. Such methods are known as Krylov subspace it-
eration methods. Their crucial property is that at each iteration they require
only the value of the matrix-vector product Av for a given vector v. That
is, if m iterations have been done, so that one has z¢,z;,...,z, (or some
equivalent set of vectors), a vector v is generated as a linear combination of
these vectors, and the next iterate z,,4; is a linear combination of Av and
the older vectors. Many methods of this type (such as conjugate gradient
iteration, for example) are known to work well when A has certain special
properties (such as symmetry), but only a few are good candidates when no
such assumptions about A are made. These are the most useful choices, be-
cause no special properties can be assumed about the function f from which
A is obtained.

Given a suitable Krylov method, it can be exploited to best advantage
by finding an efficient way to calculate products Av that does not entail
calculating the matrix A itself. To do this, we note that A is just the matrix
of partial derivatives of F(y), just as J is that of f. This implies that for
a suitably small constant €, [F(y + ev) — F(y)]/e is a good approximation
to Av. The value of F(y) is already available, and the value of F(y + ev) is
easily expressed in terms of f(t,y + ev). Thus the Krylov iteration proceeds
by making one evaluation of f and some simple vector operations at each

24

iteration until convergence of the iterates is achieved to within a suitable
tolerance. When Newton’s method and Krylov iteration are combined with,
for example, a BDF method for the ODE system, the result 1s a matriz-free
method for stiff systems. In contrast to traditional stiff-system methods,
such a method involves no explicit construction or storage of the matrices J
or A.

Working from the solver LSODE, which uses BDF methods for stiff ODE
systems, we wrote another solver that combines the Krylov methods de-
scribed above with BDF integration [6, 7). When tested, it worked well on
many of the test problems but failed badly on many others. The reason is that
Krylov methods are just not powerful enough, by themselves, to handle with
acceptable efficiency the wide variety of matrices A that can occur. However,
they can be assisted greatly by a technique known as preconditioning.

Suppose we can find a matrix P (the preconditioner matrix) that resem-
bles A to some extent but is much easier to construct and operate with. In
particular, suppose that we can solve linear systems Pz = b reasonably effi-
ciently. To solve Az = b, we write an equivalent system, say (AP~!)(Pz) = b,
with a different matrix A’ = AP~! and a different solution vector ' = Pz,
and apply the Krylov method to the problem A’zc’ = b. Each iteration re-
quires the evaluation of a product A’v = AP~!v, but that is achieved by
solving Pw = v for w and then approximating Aw as before. If the iteration
converges to a vector z’, then the vector we want is £ = P~'z’, or the solution
of Pz = z’. Convergence is more likely to occur now, because A’ is closer to
the identity matrix, depending on how close P is to A. This arrangement is
called preconditioning on the right (since P~ multiplies A on the right), but
one can just as easily precondition on the left, by writing (P~!A)z = P~1b.
In fact, one can precondition on both sides, with two preconditioners P; and
P, whose product approximates A.

To incorporate the idea of preconditioning, we wrote another LSODE vari-
ant, called LSODPK, containing a selection of preconditioned Krylov meth-
ods to solve the linear system problem [8]. The Krylov methods available are
Preconditioned Conjugate Gradient iteration (PCG), the Arnoldi method,
and the Generalized Minimal Residual method (GMRES) [9]. LSODPK
works well on many test problems that could not be handled without pre-
conditioning. Because the choice of preconditioner can best be made by
exploiting the structure of the problem, the user of LSODPK must supply
the preconditioner. That is, in terms of the ODE system itself, the user must

25

identify the most important contributions to the Jacobian matrix J (that 1is,
to the stiffness of the ODE system), find a way to represent and operate with
these contributions in an economical manner, and then use them to build one
or two preconditioner matrices P, and P,. For a complicated problem, the
user’s job may seem to require as much effort as constructing a complete
solution method for the problem from scratch. But it does not, because it
focuses on the linear system aspect of the solution only, while the solver takes
care of accounting for the errors associated with the choice of precondition-
ers, for the nonlinear iteration surrounding the linear system, and for the
accuracy of the time-stepping procedure.

Although the construction of good preconditioners depends heavily on
the nature of the problem, considerable experience has been built up with
respect to certain classes of problems. For ODE systems that arise from
the spatial discretization of time-dependent systems of PDEs, two natural
choices are typically available. First, the terms in the PDEs that reflect
how the different PDE components are coupled to each other at each spatial
point give rise to one type of preconditioner, which we call the interaction
preconditioner. Second, the terms that reflect how each PDE component is
transported in space can be used to construct another type of preconditioner,
which we call the transport preconditioner. For example, in the ozone model
given at the beginning, the chemical kinetics terms R; lead to an interaction
preconditioner and the diffusion terms lead to a transport preconditioner. If
both contributions are important, then either they can be regarded as the
two preconditioners P, and P; needed by LSODPK or their product can be
used as a single preconditioner on either side.

One particular problem solved by this approach is a system of PDEs
on a two-dimensional spatial grid with a discretized frequency variable that
represents a laser oscillator model. We developed a pair of preconditioners,
first by considering the interaction and transport contributions separately but
later with a modification motivated by the Jacobian structure whereby some
interaction coefficients were moved to the transport preconditioner. The size
of the ODE system varied up to 38,745, and LSODPK generated solutions
with complete success.

After seeing how successful the combination of Krylov and BDF methods
was with the LSODPK solver, we generated a similar combination with the
VODE solver, called VODPK {10]. In this case, the Krylov method chosen
is the GMRES method. In using VODPK on a large stiff system, the power

26

and generality of variable-coeflicient BDF methods, Newton iteration, and
GMRES iteration is combined with a user-supplied preconditioner (or pre-
conditioner pair) that incorporates problem-specific informtion where it is
most needed.

10 Differential-Algebraic Systems

Many physical phenomena are most naturally described by a system of dif-
ferential/algebraic equations of the form

F(t,y,y') = 0. (28)

This type of system occurs frequently as an initial value problem in modeling
electrical networks, the flow of incompressible fluids, mechanical systems sub-
ject to constraints, robotics, distillation processes, power systems, trajecto-
ries, control systems, and in many other applications. Differential/algebraic
systems are different from ODE systems in that, while they include ODE
systems as a special case, they also include problems that are quite different
from ODEs. Some of these systems can cause severe difficulties for numer-
ical methods. Consequently, the numerical solution of these systems is a
very active area of research. We outline some of the key ideas here; they are
described in greater detail in [11].

In a sense, the more singular a DAE system is, the more difficult it is
to solve numerically. The inder of a DAE system is a measure of its degree
of singularity. Roughly speaking, ODE systems y' = f(t,y) have indez zero.
Differential equations coupled with algebraic constraints (that is, y' = f(y, 2),
0 = ¢(y,2)) have indez one if ¢ = 0 can be solved for z given y (that
is, if dg/0z is nonsingular) and otherwise have an index higher than one.
The index can also be defined for systems that are not expressed in the
semi-explicit form of differential equations coupled with algebraic constraints.
Additional difficulties can arise for these systems because the singularity may
be moving from one part of the system to another.

A simple example of a higher-index system is given by the equations
describing the motion of a pendulum in Cartesian coordinates. Let L denote
the length of the bar, A the force on the bar (suitably normalized), and =z
and y the coordinates of the infinitesimal ball of mass one located at the free

27

end of the bar. Then z, y, and A solve the DAE system

" = Az, (29)
"= ’\y -9
0 = z2+4y°— L%

where g is the gravitational constant.

The index of this system is three. While this simple system can be easily
rewritten as a standard ODE system by converting to radial coordinates,
this is often not practical for the much larger systems that are automatically
generated by simulation packages designed to model complicated physical
networks.

An even simpler example of a higher-index system, which illustrates some
of the ways in which these singular systems are quite different from ODEs,
1s given by

y = g(t), (30)

x = y.

The index of this system is two. While it looks superficially similar to an
ODE system, there are important differences. The solution is less continuous
than the input function g(¢). There is no family of solutions corresponding
to an arbitrary choice of initial values. Rather, the initial values (in fact,
all values) are completely determined in terms of the function g and its
derivative. Finally, it is clear that thete is an implied differentiation to obtain
r. Since numerical differentiation is notoriously ill-conditioned (sensitive to
small errors), difficulties for numerical ODE methods can be expected when
there is a higher-index subsystem present in the system.

Over the past decade, a theoretical framework has been developed for
understanding the order, stability and convergence of linear multistep and
Runge-Kutta methods applied to general index-one and to index-two and
index-three systems that can be written in a semi-explicit triangular form
that commonly occurs in applications. Not all ODE methods are appropriate
for DAEs; the theory shows which methods are stable and accurate. Often
for DAEs there is also a choice of formulations of the equations. Different
formulations may have the same exact solution but differ considerably in
their properties for numerical solution. Recent work has focused on finding

28

appropriate formulations for classes of problems in applications which are
advantageous for stability and accuracy of the numerical solution [12].

The development of codes for DAEs is not a straightforward task because
of difficulties in the computation arising from the singular part of the system
and the coupling to the differential part, which do not occur for ODE systems.
In particular, starting, error estimation, and solving the nonlinear system all
present potential difficulties even for index-one systems, and especially for
higher-index systems. We have developed a Fortran package called DASSL
[2], which uses fixed-leading-coefficient BDF methods for index-one DAEs.
Complete details of the algorithm are available in the book [11]. DASSL
has been used successfully for solving a wide range of problems at various
universities, laboratories, and in industry, both in the U.S. and in several
foreign countries. With some modification as described in {11}, DASSL can
also be used to solve index-two systems. Codes for DAEs based on Runge-
Kutta methods have also been developed; see for example [5]. These methods
are particularly effective for problems with frequent discontinuities.

In contrast to the situation for ODEs, initial conditions for DAEs must be
consistent, in the sense that they must satisfy the constraints of the system
and possibly also some of the derivatives of the constraints. For example,
for the pendulum problem (29), the constraint and its first and second time
derivatives must be satisfied at the initial time, leading to

0 = z?2+y* - L2 (31)
0 = zz'+yy
0 = AL’ —gy+ (') + (v')".

Currently, the user computes these consistent initial conditions, using his
knowledge of the problem and a nonlinear system solver. We are working
on a software package to be used in combination with DASSL or its exten-
sions which would make this task more routine for many index-one systems.
Methods for finding consistent initial conditions for higher-index systems are
described for example in [13].

The success of Krylov iteration methods combined with the ODE solvers
LSODE and VODE has inspired the same approach for DAE systems. Ac-
cordingly, we developed a variant of DASSL, called DASPK, that combines
the preconditioned GMRES Krylov iterative method with the BDF methods
of DASSL, as applied to DAE systems [14].

29

11 Software Packages

Even the best numerical method is unlikely to find wide acceptance until it
is embodied in a computer code that is made available for general use. In
that spirit, much of our work on methods for ODE and DAE systems has
been accompanied by the development of software packages. It is important
to understand that this process is not simply a direct translation of a set of
formulas into a suitable programming language. Initially, it entails a multi-
tude of decisions on representing and manipulating the relevant data most
efficiently and on carrying out all of the numerical processes that together
constitute a complete algorithm. The resulting computer code is tested on a
wide variety of problems to see that it performs as expected. Then, at some
point, it is given to users, along with suitable documentation, so that it can
be tried out on realistic problems. All of these phases generate feedback that
may result in revision or rewriting of parts of the code. A code often goes
through several such feedback-revision cycles during its lifetime.

Various general-purpose packages have been written by the authors of
this paper to solve systems of ODEs and or DAEs. These packages are listed
in Table 1. Details of the algorithms are available in the various references.
Nearly all of the packages listed are available from the Energy Science and
Technology Software Center in Oak Ridge. The survey paper [15] on stiff
ODE solvers discusses various software, applications, examples, and related
issues. The book [11] discusses DAE issues, applications, and software.

A great deal of useful software for solving ODEs and a wide variety of
other numerical and non-numerical problems is available freely on the Inter-
net via Netlib [16). This includes most of the codes listed here. One can
obtain an index of Netlib ODE software by

mail netlibQornl.gov
Subject: send index from ode

The netlib system will then mail back an index of ODE solvers and descrip-
tions. To obtain one of these solvers (for example, to obtain DDASSL—
double precision DASSL), send the following message

mail netlib@ornl.gov
send ddassl from ode

30

Solver Problem

Comments

LSODE ¢ = f(t,y)

User specifies stiff or nonstiff method;
allows dense or banded Jacobian
matrix in stiff case.

VODE y' = f(t,y)

Like LSODE, but with variable-coeflicient
methods internally.

LSODES ¥ = J(t,y)

LSODE variant for general sparse Jacobian.

yl
LSODA ¢' = f(t,y)

Automatically, dynamically determines
where problem is stiff, and chooses
appropriate method; allows dense or
banded Jacobian matrix.

LSODAR ¥ = f(t,v)

Same as LSODA but includes additional
root-finding stopping criteria.

LSODI M(t,y)y =g(t,y)

Solves linearly implicit ODE or DAE
system; allows dense or banded coupling.

LSOIBT M(t,y)y' = g(t,y)

Same as LSODI but allows block-
tridiagonal coupling.

DASSL F(t,y,y)=0

Solves index-one DAE systems; allows
dense or banded coupling.

DASRT F(t,y,4) =0

Same as DASSL but with additional
root-finding stopping criteria.

LSODPK ¢ = f(i,y)

LSODE variant; has preconditioned Krylov
iterative methods for linear systems.

LSODKR ¥’ = f(t,y)

Like LSODPK, but with root-finding and
automatic Newton/functional iteration
switching.

VODPK ¢ = /(5,9

VODE variant; has preconditioned Krylov
iterative methods for linear systems.

DASPK F(t,y,y')=0

DASSL variant; allows selection of
direct methods or preconditioned Krylov
iterative methods for linear systems.

CVODE ¢’ = f(t,y)

Rewrite of VODE and VODPK in C.

Table 1: General-purpose multistep packages available from the authors for
solving systems of ODEs and/or DAEs

31

On many X-window systems, an interactive version of netlib called Xnetlib
is available.

One software package that is the outcome of a lengthy evolutionary
process is a Fortran solver called LSODE [1, 17]. (LSODE was written
in 1979, but the comprehensive documentation [1] was only recently com-
pleted.) LSODE solves ODE initial value problems that are given in the
explicit form of (1). It allows a user to select between an Adams method (for
nonstiff systems) and a BDF method (for stiff systems), using the fixed-step-
interpolatory form for both of these methods. When solving a stiff system,
and therefore when dealing with the Jacobian matrix J in (24), LSODE as-
sumes that the matrix is either full (dense), or banded (has nonzero elements
located near its main diagonal). The user can either supply J with coding of
his own or let LSODE generate an approximation to J internally. Jacobians
generated internally are computed as finite difference quotient approxima-
tions. In the dense case, this uses N extra f evaluations, and in the banded
case with bandwidth M it uses M extra f evaluations.

More recently, a variable-coefficient solver called VODE [3] was written.
VODE looks nearly identical to LSODE as far as its usage is concerned,
but the internal algorithm is considerably different. VODE uses the fixed-
leading-coefficient form of variable-step BDF methods, and the fully variable-
coeflicient form of the Adams methods. In addition, it includes a feature not
in LSODE that can drastically decrease the number of evaluations of the
Jacobian J. VODE normally saves a separate copy of J, and when the
modified Newton iteration fails to converge, and the apparent reason is the
change in the coeflicient h3 in the Newton matrix of (24), that matrix is
updated without a re-evaluation of J.

VODE and LSODE are “standard choices” for ODE initial value prob-
lems. Some applications, however, give rise to other problem forms that
VODE and LSODE cannot handle. For example, a large stiff system may
have a Jacobian that is sparse (most elements are nonzero) but not tightly
banded. For that case, there is a sparse variant of LSODE called LSODES.
It uses parts of the Yale Sparse Matrix Package to solve the linear systems,
and it includes an algorithm to generate difference quotient Jacobian approx-
imations with a reduced number of f evaluations.

Another common situation is one where the problem changes with time
from stiff to nonstiff and back again. For that case, there is another variant,
called LSODA; this code switches automatically between stiff and nonstiff

32

methods in a dynamic manner. Yet another variant, LSODAR, addresses
the case where the ODE solution is to be stopped at a root of some other
function (or set of functions) of y, as when a particle trajectory is stopped
at the boundary of a geometrical region. Another way of dealing with the
change between stiff and nonstiff is to switch dynamically between Newton
iteration and functional iteration while using the BDF integration method.
This kind of switch has been used in another LSODE variant, LSODKR.

Two other variants of LSODE, called LSODI and LSOIBT, are tailored
for the case in which the ODE system is not given in the explicit form of
(1) but in an implicit form with a matrix M multiplying the time derivative.
This system is written

M(t,y)% = g(t,y). (32)

For example, if a PDE problem is treated by the Finite Element Method for
the spatial discretization, then M is the mass matrix. Even if M is invert-
ible, so that one could write an equivalent system dy/dt = M~!g(t,y), this is
usually not an efficient way to solve the problem. Instead, one can efficiently
treat (32) directly by the same methods used in LSODE, slightly reformu-
lated. LSODI does this under the assumption that the matrices involved
(M and the various Jacobian matrices) are either full or banded. LSOIBT
treats the same problem form, but assumes that the matrices involved are
“block-tridiagonal,” meaning that the nonzero elements occur in blocks ly-
ing on and beside the main diagonal, a common occurrence in semi-discrete
forms of PDE problems.

The LSODE solver, together with the variants of it just described, form
a “systematized collection” of solvers called ODEPACK [17]. Their outward
appearance (the user interface) is standardized by the use of identical names
and meanings for features that are common to two or more of the codes.
They are also standardized internally by, among other things, the use of
shared Fortran subroutines for various subordinate tasks.

Large stiff ODE systems are often beyond the reach of the solvers in
ODEPACK, and require iterative methods for the linear systems involved.
For this case, there are two variants of LSODE, called LSODPK (8] and
LSODKR, and a variant of VODE, called VODPK [10]. All three use Krylov
subspace methods with user-supplied preconditioning. In addition, LSODKR
includes root-finding (as in LSODAR).

Several solvers have been written for DAE problems. In the linearly

33

implicit case (32), with M singular, LSODI and LSOIBT have been used
with some success. But they were not designed for DAE systems, and are
less reliable for them than the DASSL package [11]. DASSL, which also uses
a BDF method, treats the linear systems as full or banded, but in various
details it addresses the issues of DAE problems directly. A variant of DASSL
with a root-finding ability added, called DASRT, is also available.

For large DAE systems, where iterative methods are more suitable that
direct methods for the linear systems, we have written a variant of DASSL
called DASPK [14], which includes the GMRES Krylov method with user-
supplied preconditioning as an option. DASPK actually includes the direct
methods of DASSL as well. For use on massively parallel machines, two
modified versions of DASPK have been written—one using Fortran 90 (with
data-parallelism), and one using message-passing [18]. Codes for comput-
ing consistent initial conditions for index-one DAEs and for computing the
sensitivity of solutions to DAEs and large-scale DAEs with respect to given
parameters, are currently in progress.

In recent years, there has been a trend to away from writing software in
Fortran and toward writing in the C language. In response, we have been
working on a rewrite in C of the VODE and VODPK solvers (combined),
called CVODE. CVODE is composed of a central integrator module that has
no knowledge of the nature of the linear system solver (direct or iterative,
full or banded, etc.) and a set of linear solve modules that the user selects
from prior to starting the integration. An additional motivation for this C
rewrite of VODE/VODPK is our plan to extend this package to a parallel
version of the solver for distributed-memory MIMD machines.

References

[1) Krishnan Radhakrishnan and Alan C. Hindmarsh, Discription and Use
of LSODE, the Livermore Solver for Ordinary Differential Equations,
NAGSA Reference Publication 1327, and LLNL Report UCRL-ID-113855,
March 1994.

(2] L. R. Petzold, A Description of DASSL: A Differential/Algebraic System
Solver, in Scientific Computing, R. S. Stepleman et al., Eds. (North-
Holland, Amsterdam, 1983), pp. 65-68.

34

(3] P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, VODE , a Variable-
Coefficient ODE Solver, SIAM J. Sci. Stat. Comput., 10 (1989), pp.
1038-1051.

(4] J. C. Butcher, Runge-Kutta Methods in Modern Computation, this col-
umn, 1994.

[5] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II:
Stiff and Differential-Algebraic Problems, Springer, 1991.

[6] P. N. Brown and A. C. Hindmarsh, Matriz-Free Methods for Stiff Sys-
tems of ODEs, SIAM J. Num. Anal., 23 (1986), pp. 610-638.

[7] P. N. Brown, A Local Convergence Theory for Combined Inezact-
Newton/ Finite-Difference Projection Methods, SIAM J. Num. Anal.,
24 (1987), pp. 407-434.

[8] P. N. Brown and A. C. Hindmarsh, Reduced Storage Matriz Methods in
Stiff ODE Systems, J. Appl. Math & Comp., 31, (1989), 40-91.

[9] Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual
Algorithm for Solving Nonsymmetric Linear Systems, SIAM J. Sci. Stat.
Comp., 7 (1986), 856-869.

[10) George D. Byrne, Pragmatic Ezperiments with Krylov Methods in the
Stiff ODFE Setting, in Computational Ordinary Differential Equations, J.
R. Cash and 1. Gladwell (Eds.), Oxford University Press, Oxford, 1992,
pp. 323-356.

[11] K. Brenan, S. Campbell and L. Petzold, Numerical Solution of Initial-
Value Problems in Differential-Algebraic Equations, Elsevier, New York,
1989.

[12] U. Ascher and L. R. Petzold, Stability of Computational Methods for
Constrained Dynamics Systems, SIAM J. Sci. Comput., 14 (1993), pp.
95-120.

[13] B. J. Leimkuhler, L. R. Petzold, and C. W. Gear, Approzimation Meth-
ods for the Consistent Initialization of Differential-Algebraic Equations,
SIAM J. on Numer. Anal. 28 (1991), pp. 205-226.

35

[14] P. N. Brown, A. C. Hindmarsh, L. R. Petzold, Using Krylov Methods in
the Solution of Large-Scale Differential-Algebraic Systems, SIAM J. Sci.
Comp., 15 (1994), to appear.

[15] G. D. Byrne and A. C. Hindmarsh, Stiff ODE Solvers: A Review of
Current and Coming Attractions, J. Comput. Phys., 70 (1987), pp. 1-
62.

(16] J. Dongarra and E. Grosse, Distribution of Mathematical Software via
Electronic Mail, Comm. ACM, 30 (1987), pp. 403-407.

(17) A. C. Hindmarsh, ODEPACK, A Systematized Collection of ODE
Solvers, in Scientific Computing, R. S. Stepleman et al., Eds. (North-
Holland, Amsterdam, 1983), p. 55-64.

[18] R.S.Maier, L. R. Petzold and W. Rath, Solving Large-Scale Differential-
Algebraic Equations via DASPK on the CM5, submitted to Concur-
rency: Practice and Experience, 1994.

36

